Performance Benchmarks
Real performance metrics and optimization techniques to maximize the efficiency of your ETLs.
Reference Benchmarks
Base Performance by Connection Type
| Connection | Records/sec | Average latency | Peak memory | Use cases |
|---|---|---|---|---|
| MySQL | 850-1,200 | 45ms | 128MB | OLTP, transactional |
| PostgreSQL | 750-1,000 | 52ms | 145MB | Analytics, reports |
| Fracttal API | 320-480 | 180ms | 89MB | Maintenance data |
| Google Sheets | 45-85 | 1,200ms | 67MB | Manual reports |
| HTTP REST | 200-800 | 250ms | 95MB | External integrations |
| Email SMTP | 15-25 | 2,500ms | 45MB | Notifications |
Performance Factors
graph LR
A[ETL Performance] --> B[Source Performance]
A --> C[Transform Complexity]
A --> D[Target Performance]
B --> E[Query Optimization]
C --> F[JSON Logic Steps]
D --> G[Network Latency]
classDef main fill:#e3f2fd,stroke:#1976d2,stroke-width:3px,color:#0d47a1
classDef factor fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px,color:#4a148c
classDef metric fill:#e8f5e8,stroke:#388e3c,stroke-width:2px,color:#1b5e20
class A main
class B,C,D factor
class E,F,G metric
D --> D1[Batch processing]
D --> D2[Connection pooling]
D --> D3[Rate limiting]
```
Real Case Studies
Case 1: Order Synchronization (DB → ERP)
Scenario: 50K daily orders from MySQL to external API
json
{
"benchmark": {
"records": 50000,
"execution_time": "18m 45s",
"throughput": "44 records/sec",
"memory_peak": "2.1GB",
"cpu_avg": "78%",
"issues": [
"N+1 queries",
"No batch processing",
"Full in-memory transform"
]
}
}
json
{
"config": {
"source": {
"parameters": {
"query_string": {
"table": "orders",
"where": "status IN ('completed','shipped') AND updated_at >= CURRENT_DATE - INTERVAL 1 DAY",
"order_by": "id",
"batch_size": 2000
}
}
},
"transform": [
{
"batch_transform": {
"chunk_size": 500,
"parallel_processing": true,
"max_workers": 4
}
}
],
"target": {
"parameters": {
"batch_requests": true,
"max_batch_size": 100,
"connection_pool": 5
}
}
},
"result": {
"execution_time": "4m 12s",
"throughput": "198 records/sec",
"memory_peak": "456MB",
"cpu_avg": "34%",
"improvement": "4.5x faster, 78% less memory"
}
}
Case 2: Asset Maintenance Reports (API → Sheets)
Scenario: Daily maintenance reports from Fracttal to Google Sheets
json
{
"original_performance": {
"records": 5000,
"execution_time": "12m 30s",
"api_calls": 5000,
"sheets_writes": 5000,
"rate_limit_hits": 47
},
"optimized_performance": {
"execution_time": "2m 45s",
"api_calls": 50,
"sheets_writes": 25,
"rate_limit_hits": 0,
"strategies": [
"API pagination (100 records/call)",
"Batch writing to Sheets (200 records/write)",
"Intelligent retry with exponential backoff"
]
}
}
Case 3: Real-time Inventory Sync (DB → API → Webhook)
Scenario: Real-time inventory updates across multiple systems
json
{
"pipeline_performance": {
"source_to_transform": "150ms",
"transform_processing": "89ms",
"target_delivery": "320ms",
"total_latency": "559ms",
"throughput": "1,789 records/sec",
"success_rate": "99.7%"
},
"optimization_techniques": [
"Streaming processing",
"Async I/O operations",
"Connection pooling",
"Circuit breaker pattern"
]
}
Optimization Strategies
Database Source Optimization
Query Performance:
sql
-- Bad: Table scan
SELECT * FROM orders WHERE customer_name LIKE '%john%'
-- Good: Indexed search
SELECT id, customer_id, total, status
FROM orders
WHERE customer_id IN (SELECT id FROM customers WHERE name_index LIKE 'john%')
AND created_date >= '2024-01-01'
Batch Configuration:
{
"source": {
"id_type": 1,
"form": {
"sql": "SELECT * FROM large_table WHERE id BETWEEN ? AND ? ORDER BY id",
"batch_size": 1000,
"parallel_batches": 4,
"connection_pool_size": 8
}
}
}
Transform Optimization
Memory-Efficient Processing:
{
"transform": [
{
"streaming_transform": {
"process_in_chunks": true,
"chunk_size": 500,
"memory_limit": "512MB"
}
},
{
"parallel_processing": {
"enabled": true,
"max_workers": 4,
"worker_memory_limit": "128MB"
}
}
]
}
Complex Logic Optimization:
{
"transform": [
{
"pre_filter": {
"condition": {"status": {"in": ["active", "pending"]}},
"early_exit": true
}
},
{
"cached_lookup": {
"field": "customer_id",
"lookup_table": "customer_cache",
"cache_ttl": 3600
}
}
]
}
Target Optimization
Batch Writing:
{
"target": {
"id_type": 10,
"form": {
"batch_size": 1000,
"batch_timeout": 30,
"parallel_writes": true,
"max_concurrent_batches": 3
}
}
}
Rate Limiting:
{
"target": {
"id_type": 2,
"rate_limiting": {
"requests_per_second": 10,
"burst_size": 20,
"backoff_strategy": "exponential"
}
}
}
Monitoring and Tuning
Performance Metrics to Track
{
"metrics": {
"throughput": {
"records_per_second": "number",
"bytes_per_second": "number",
"target": "> 500 records/sec"
},
"latency": {
"avg_record_processing_time": "milliseconds",
"p95_processing_time": "milliseconds",
"target": "< 100ms p95"
},
"resource_usage": {
"memory_usage_mb": "number",
"cpu_usage_percent": "number",
"target": "< 70% CPU, < 1GB RAM"
},
"error_rates": {
"connection_errors": "percentage",
"transform_errors": "percentage",
"target": "< 0.1% errors"
}
}
}
Real-time Monitoring Configuration
{
"monitoring": {
"enabled": true,
"sampling_rate": 0.1,
"metrics_interval": 30,
"alert_thresholds": {
"execution_time_minutes": 15,
"error_rate_percent": 1,
"memory_usage_gb": 2
},
"dashboards": {
"grafana_endpoint": "http://monitoring:3000",
"metrics_prefix": "etl.performance"
}
}
}
Performance Tuning Checklist
Before Optimization: - [ ] Establish baseline metrics - [ ] Identify bottlenecks (source, transform, or target) - [ ] Set performance targets - [ ] Plan testing strategy
Source Optimization: - [ ] Optimize queries with proper indexing - [ ] Implement batch processing - [ ] Use connection pooling - [ ] Filter data at source
Transform Optimization: - [ ] Minimize complex transformations - [ ] Use streaming processing for large datasets - [ ] Implement parallel processing - [ ] Cache frequently accessed data
Target Optimization: - [ ] Batch writes when possible - [ ] Implement proper error handling - [ ] Use connection pooling - [ ] Respect rate limits
System Optimization: - [ ] Monitor resource usage - [ ] Scale horizontally when needed - [ ] Implement circuit breakers - [ ] Use async I/O operations
Performance Testing
Load Testing Configuration
{
"load_test": {
"test_scenarios": [
{
"name": "normal_load",
"records": 10000,
"concurrent_etls": 1,
"duration": "5m"
},
{
"name": "peak_load",
"records": 50000,
"concurrent_etls": 3,
"duration": "15m"
},
{
"name": "stress_test",
"records": 100000,
"concurrent_etls": 5,
"duration": "30m"
}
],
"success_criteria": {
"throughput_min": 500,
"error_rate_max": 1,
"memory_usage_max_gb": 2
}
}
}
Benchmarking Tools
# ETL Performance Profiler
python -m etl_profiler --config config.json --duration 300
# Memory Usage Analysis
python -m memory_profiler etl_script.py
# Database Query Analysis
EXPLAIN ANALYZE SELECT * FROM your_query;
Best Practices Summary
High-Performance ETL Patterns
- Incremental Processing: Only process changed data
- Parallel Processing: Utilize multiple workers/threads
- Batch Operations: Group operations for efficiency
- Connection Pooling: Reuse connections
- Smart Caching: Cache frequently accessed data
- Error Recovery: Implement robust retry mechanisms
Anti-patterns to Avoid
- Row-by-row processing: Always use batch operations
- Full table scans: Use proper indexing and filtering
- Synchronous I/O: Use async operations for I/O bound tasks
- Unlimited memory usage: Implement streaming for large datasets
- No error handling: Always implement proper error recovery
- Hardcoded limits: Make batch sizes and timeouts configurable
Remember: Performance optimization is iterative. Start with baseline measurements, identify bottlenecks, apply optimizations, and measure improvements. Always test under realistic load conditions.